Hydrodynamic Processes in the Delta: Some things that might be important and probably are tricky to model

Stephen G. Monismith

Collaborators:

Jon Burau, Mark Stacey, Derek Fong, Jim Hench, Nick Nidzieko, Geoff Schladow, Bill Fleenor, Laura Doyle, and Vamsi Sridharan

Support:

CALFED Science and Ecosystem Restoration Programs, Singapore-Stanford Program

Outline

- Bathymetry and roughness: Differential friction in Threemile Slough
- Role of dispersion in setting water temperature: The Stockton Ship Channel
- The effect of diurnal stratification on turbulence: The Stockton Ship Channel
- The effect of channel junctions on particle transport: Modeling with a version of the DSM2-PTM

Results: interpretation / explanation

<u>Hypothesis</u>: Bedforms are likely responsible for asymmetric drag. (consistent with streamlining theory)

Bedforms in 3MS are 20-30% the total water depth! (Dinehart 2002)

Why this might be tricky to model

- Direction-dependent drag coefficient is not the norm for 3D models
- Bedforms and hence drag change in time

Summary

- Even "weak" thermal stratification can have a dramatic effect on vertical mixing
- Much of water column has turbulence controlled by buoyancy
- Phasing of tides and heating leads to sheared residual flow even without baroclinic pressure gradient

Why this might be tricky to model

 Stratification effects on turbulence is one of the principal unsolved problems in CFD/Fluid mechanics

First law of Thermodynamics applied to a water column in the San Joaquin

$$I = \frac{d}{dt} \left(\int_{0}^{H} \rho c_{p} T dz \right) = -\left(Q_{0} (1 - a) + Q_{lw} + Q_{s} + Q_{lh} \right)$$

Correction heat flux calculated as dispersion coefficient

Subtidal model of cross-sectionally averaged temperature including river flow Q_f and dispersion with dispersion coefficient K

$$A(x)\frac{\partial T}{\partial t} - Q_f \frac{\partial T}{\partial x} + \frac{W \sum Q_{surf}}{\rho c_p} = \frac{\partial}{\partial x} \left(K(x) A(x) \frac{\partial T}{\partial x} \right)$$

Measure/Calculate

"Correction"

Why this might be tricky to model

- Large dispersion coefficient probably reflects effects of junctions at scale of whole Delta
- Does this depend on getting junction flows correct?

Fortran PTM (V. Sridharan)

- DSM PTM coded in Fortran (intended for use with LSU/SFSU Delta Smelt model)
- Differences: Vertically variable mixing, RK4 time advancement, junction behavior
- For 2 channel junctions: no mixing preserve position in channel
- For 3 channel junctions: follow streamlines or complete mixing
- For 4+ channels junctions: We are open to suggestions

Why this might be tricky to model

- Details of junction flow involve complex 3D circulation, possibly including non-hydrostatic pressures
- Details of secondary flows not done well yet in "normal" 3D models, tough even for high resolution models
- High resolution 3D models are slow

